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Liquids at High Pressures 
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The design and operation of a new vibrating-wire viscometer for the measure- 
ment of the viscosity of liquids at pressures up to 100 MPa are described. The 
design of the instrument is based on a complete theory so that it is possible to 
make absolute measurements with an associated error of only a few parts in one 
thousand. Absolute measurements of the viscosity of n-hexane are reported at 
298.15 K at pressures up to 80 MPa. The overall uncertainty in the reported 
viscosity data is estimated to be _+0.5%, an estimate confirmed by the 
comparison of values of viscosity of slightly inferior accuracy. 
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1. I N T R O D U C T I O N  

Many classical methods for the measurement of the viscosity of liquids 
require a bulk motion of the fluid as well as the measurement of relatively 
small pressure differences. Whereas such techniques are simple near 
atmospheric pressure, they become increasingly inappropriate at high 
pressures due to the difficulties associated with the measurement of such 
small pressure differences in the pressence of a high total hydrostatic 
pressure. For this reason, high-pressure viscometry has made use of 
different techniques involving the motion of solid bodies through the fluid, 
The most popular of these techniques has been that of observing the time 
of fall of a body of revolution through the fluid under gravity. It is 
frequently difficult to ensure that such devices operate exactly in 
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accordance with the available theory of them, so that although the 
precision of the measurements can be as good as +_0.1%, the uncertainty 
is often one order of magnitude worse. 

An alternative type of viscometer makes use of the effect of the fluid 
on the oscillations of a body of revolution immersed in the fluid. For  
operation at high pressures, the most suitable geometry for such a device 
is that of a cylindrical wire performing transverse oscillations perpendicular 
to its length. This is because the volume of fluid required is small, the 
amplitude of motion of the solid material is of the order of a micrometer 
and the requisite measurement of the prime experimental quantities can be 
made with a high precision. Instruments of this kind have been employed 
successfully for measurements at the temperatures of liquid helium [-1] 
and, independently, in gases at pressures up to 1000 MPa [2].  A recent 
reevaluation of the theory of the technique has enabled the working equa- 
tions for the method to be refined [-3] and, in particular, has established 
the criteria which it is necessary to satisfy in order that the instruments 
operate in a manner consistent with the theory. In this paper we describe 
an instrument of this type designed in accordance with theoretical 
constraints to perform viscosity measurements in liquids at pressures up to 
100 MPa with an uncertainty of +0.5%.  

2. THE IDEAL M O D E L  

The ideal model of the viscometer is essentially that sketched in Fig. 1. 
A circular section rod of radius R and half-length L, clamped at both ends, 
is performing free oscillations in an initially stationary fluid of constant 
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Fig. 1. The  ideal model .  
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viscosity,/~, and density, p. The motion of the rod is initiated by providing 
transverse deflection y o f ( z )  and releasing it. It can be shown that, 
provided the wire is sufficiently thin (R ~ L), the equation of motion for 
the rod can be written [3,4] as 

E l y  . . . .  - - T Y z z + ( m s + m b ) Y t t + ( D b + D o ) y ~ = F ( z ,  t) (1) 

where E represents the Young's modulus for the rod material, T the axial 
tension in the rod, and Do a coefficient of internal damping. The term F 
represents a force per unit length acting on the rod that arises from the 
initiation of motion in the fluid at t = 0. For  long times this term becomes 
negligible and the motion of the rod and fluid is oscillating and 
isochronous. 

The remaining parameters of Eq. (1) are 

I =  (1/4)~R 4, D b = p~RZcok ' 
(2) 

m S = psrcR 2, m b = p ~ R Z k  

and we write 

D O = 2psrcR2coAo (3) 

for later convenience. Here, Ps is the density of the rod material and A o the 
logarithmic decrement of the oscillation in vacuo. The parameters k and k', 
which are functions of frequency, express the mass and damping added to 
the oscillating rod by the presence of the external fluid. It is preferred to 
analyze the mechanical motion of the rod without specifying the exact 
nature of k and k' and subsequently determine the later from an analysis 
of the fluid flow around the rod. At this stage of the analysis, co represents 
a characteristic frequency yet to be determined. 

As we are concerned with the transient decay of free oscillations of the 
rod, Eq. (1) is to be solved subject to the spatial boundary conditions 
[3, 4], 

y = 0 and Yz = 0 at z = _+L (4) 

and the initial conditions, 

y(z ,  t ) =  y o f ( z )  (5) 

y, = 0 at t = 0 

where Yo is the maximum initial displacement of the rod and f an arbitrary 
function of z ( I f f  <~ 1). 
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The general solution of Eq. (1) is [3, 4] 

~(~, ~) = ~ ~Dj(~) e(i--AJ)q)J z --~ ~, ~)m(~)e -vm~-m'c (6) 
j = l  m = l  

where ~ is a dimensionless displacement from the rest position, ~ a dimen- 
sionless axial coordinate, z a dimensionless time, and Oj a dimensionless 
angular frequency for the normal mode of oscilation ~bj. These dimen- 
sionless quantities are defined [3] as 

= Y/Yo, z = t(EI/msL4) 1/2 (7) 

= z/L, ~j  = ooj(rnsL4/EI) 1/2 

where ~oj is the angular frequency in mode j in a fluid. 
The second summation on the right-hand side of Eq. (6) represents a 

simply decaying displacement whose exact value depents on the initial 
conditions for the motion. In the present analysis these terms are not 
considered because they are ultimately unimportant to the evaluation of 
the viscosity [3]. The first summation contains a damped simple-harmonic 
oscillation for each mode of oscillation in which Aj characterizes the rate 
of damping. 

The normal nodes of the wire, in the same dimensionless notation, are 

q~j = Aj cos a f ~ + B j c o s h a + ~  (8) 

with the wave vectors given by the equation 

a f  = { [(~2/4) + n#] 1/2 +_ (c(2)} '/2 (9) 

with nj determined as the solution of the equation 

and 

a j  tan a f  + a~ tanh a 7 = 0 (10) 

and 

(if0 = F/j [ 1 _~_A0 2 ] 1/2 (13)  

o~ = TL2/E1 (i 1 ) 

If we consider first the wire vibrating in vacuo, so that the fluid density 
is zero and the only damping is internal to the wire, then considering just 
one mode [3], 

A =A o (12) 
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When the liquid surrounds the wire, then the working equation for the 
viscometer, which is complex, can be written [3] as 

for the imaginary part, and 

(p/p~)k' + 2A 0 
= (14) 

211 + (p/ps)k] 

~o--~ 1+ (A2_l)  Apk'p~ 2Ao + l+A02=0  (15) 

for the real part. 
In circumstances when L>>R, the fluid motion will take place in 

planes normal to the axis of the wire, and provided that the amplitude of 
the motion, eR, is sufficiently small, it is possible to linearize the Navier- 
Stokes equations. It can thus be shown [-3] that the parameters k and k' 
are given by 

k =  -1 +2Im(A) (16) 

and 

where 

k' = 2 Re(A) - 2A Ira(A) (17) 

2Kl[-E(i-A)g2]l/2] [ (18) 
A = ( i - A )  I + E(i_A)Q]I/2 Ko[[-(i_A)~211/2]j 

The parameter g2 in the above equation is defined as 

= pcoR2/I,l (19) 

and represents the appropriate Reynolds number with # the fluid viscosity, 
while K0 and Kl are modified Bessel functions. 

The above relationships are valid provided [-3] that 

e ~ g2 ~ 1/e 2 (20) 

and 

~ e R / c  ~ 1 (21) 

where C is the sonic velocity in the fluid. 
In principle, either Eq. (14) or Eq. (15) may be used to obtain the 

viscosity but they are not equivalent since they differ in their sensitivity to 
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the measured variables. In practice Eq. (14) will always be prefereable 
because it does not require a knowledge of co o and because Eq. (15) 
requires a far greater precision in the measurement of frequency than is 
attainable. 

Thus, Eq. (14) together with Eqs. (16)-(19) forms a consistent set of 
equations from which the viscosity of the liquid can be calculated based on 
the measurements of the logarithmic decrement and frequency of oscillation 
in the liquid and the measurement of the logarithmic decrement in the 
v a c u o .  

3. EXPERIMENTAL 

In any practical realization of a vibrating-wire viscometer it is 
necessary to add additional design criteria. First, in the present arrange- 
ment in order to preserve the precision in the viscosity measurement, it is 
necessary to contain the logarithmic decrement in a range 

0.005 < A < 0.1 (22) 

so that it is sufficiently large to be measured with a high precision but 
sufficiently small that a number of cycles of oscillation are observed. 
Second, the theory outlined above presumed that the liquid was of infinite 
extent in the radial direction. In practice, the liquid must be confined in a 
cylinder of radius Ro so that it is necessary to amend the results for k and 
k' to allow for this. An analysis performed by Chen et al. [-5] has shown 
that provided that 

Rc/R > 30 (23) 

the correction to the viscosity value calculated by the theory described 
above is less than 0.1%. 

The combination of these constraints together with those given earlier 
defines uniquely the design parameters of a viscometer for application to a 
particular liquid. For the present application to simple hydrocarbons at 
temperatures above ambient and pressures up to 100 MPa, the application 
of the design criteria result in the instrument shown in Fig. 2, while in 
Fig. 3 the assembled viscometer in the pressure vessel is shown. 

The vibrating wire is made of 100-#m-diameter tungsten wire with a 
length of 54 mm and a frequency in vacuo of about 1 kHz. The wire is 
placed between two chucks. The upper chuck, 1, is insulated from its 
support plate, 2, by PTFE washers, while support plate 2 is connected to 
support 3 that screws under the upper closure of the pressure vessel--the 
complete assembly shown in Fig. 3. At its lower end, the wire carries a 
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second chuck, 4, connected to a central weight made of tungsten, 5, that 
ensure constant tension in the wire. However, changes in the density of the 
surrounding liquid would result in changes of the buoyancy force on this 
weight and thus produce variable tension on the wire. To avoid this effect 
a second weight, 6, made of stainless steel is used in conjunction with 
a balancing mechanism, 7, shown in detail in Fig. 2. The balancing 
mechanism, also made of stainless steel, acts like a "seesaw" for the two 
weights, while small rubis at the tip of each cone ensure minimum friction. 
The volumes of the two weights are chosen so that the net effect of 
changing the density of the surrounding liquid results in a negligible effect 
upon the frequency of oscillation. 

At the same time, the inertia of the suspended weights is such that the 
lower point of attachment to the wire remains a node. These arrangements 
prevent the large frequency changes that would otherwise result from the 

@ 

@ 

Fig. 2. Schematic drawing of the viscometer. 
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effects of buoyancy on an uncompensated weight or the clamping of the 
wire at both ends in a frame whose dimensional changes under high 
pressure are different from those of the wire and unpredictable. 

The top electrical connection is made between the two nuts on the 
upper insulated chuck, while the bottom eonection is on the bottom chuck. 
Both electrical connections are led out of the pressure vessel through an 
appropriate fitting. The oscillations of the wire are induced electro- 
magnetically and detected in a similar fashion. The magnets, 8, used for 
both of these purpose are mounted in a cage, 9, surrounding the wire. The 
magnets, made from samarium-cobalt, produce a field of about 1 Tesla at 
the wire. Finally, stainless-steel pieces (not shown in Fig. 2) are placed in 
the upper two supports so as to reduce the volume of the liquid required. 

Fig. 3. The viscometer assembly. 
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The assembled instrument is shown in Fig. 3. The pressure vessel, 1, is 
made of steel 4340 and the viscometer hangs from the upper closure, 2, of 
the pressure vessel. A thin-walled stainless-steel inner vessel, 3, separates 
the liquid under investigation from the pressure pump oil. At its bottom a 
thin cylindrical PTFE sleave, 4, is used to transmit the pressure from the 
oil to the liquid. In the lower part of this thin-walled inner vessel, an 
arrangement, 5, supported by two metal strips, is available for the filling in 
vacuo of this inner vessel with the liquid. The pressure vessel is connected 
at its bottom with the pressure system, consisting of a hand-operated oil 
pump and a Budenberg calibrated pressure gauge. At the top of the 
pressure vessel the two electrical connections come out. The temperature of 
the pressure vessel is recorded by two calibrated platinum resistance 
thermometers placed in small holes on its two cups. The pressure vessel is 
finally placed in a 150-1t oil bath (Shell, Thermia B) capable of maintaining 
the tempert~ture stable and uniform with an accuracy of ___ 10 mK. 

The oscillations of the wire are initiated by applying two pulses of 
current opposite sign to the wire. The initial motion then contains a 
number of harmonics of the fundamental frequency which decay rapidly 
compared with the decay of the fundamental. It has been found that this 
symmetric method of initiation is essential to ensure that the zero point of 
the oscillation is coincident with the rest position of the wire. Following 
initiation of the motion, the signal induced in the vibrating wire is observed 
with a bridge in which the wire forms one arm. The out-of-balance signal, 
amplified by 30,000 times, is then observed with an A/D converter coupled 
to a microcomputer through Direct Memory Access. This configuration 
enables sampling of the oscillating signal at a rate of 50 kHz with a 
resolution of 12 bits. Since the frequency of the oscillation is ab9ut 1 kHz, 
one obtains roughly 50 points per cycle of the wire's motion. This informa- 
tion is stored for subsequent analysis. 

4. CONFIRMATION OF OPERATION ACCURACY 

The recorded data from a single transient decay should, if the theory 
is consistent with the operation of the instrument, conform to the equation 

y =  yo e(i ~)~' (24) 

that represents Eq. (6) for the fundamental mode of oscillation. Thus values 
of A and o~ may be derived by fitting the above equation to the 
experimental data. This can be readily achieved with the aid of a nonlinear 
least-squares fitting procedure. Figure 4 contains the first 2000 points 
accumulated in a typical run in toluene at 304.7 K and atmospheric 

840/12/2-2 
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pressure. The deviation plot shown in the same figure illustrates the 
magnitude of the deviation of the experimental points from the fit of 
Eq. (24) in this run. It is clear that there are no systematic effects and that 
Eq. (24) represents the data within the random noise level. This result 
indicates that the instrument operates in accordance with the theoretical 
model of it. In the case of the measurement in the fluid the decrement 
A has a value of about zl ,,~0.012, whereas in vacuo /Io,~ 5 x 10 -5. The 
uncertainty in the calculation of the decrement is better than 0.1%, while 
for repeated measurements under the same conductions in the fluid, its 
reproducibility was found to be beter than +0.1%. The uncertainty and 
reproducibility of the frequency of oscillation are _+0.2%. Of course, 
the precision of the measurement of zl 0 is inferior but its contribution to 
the final viscosity is small so that this is unimportant. It is worthwhile 
recording here that the buoyancy compensation mechanism has proved 
successful because the change of resonant frequency of the wire with the 
weights immersed in air or the fluid does not exceed +0.1%. 

The final viscosity value is obtained from Eq. (14) and Eqs. (16)-(19). 
In these equations, the calculation of the modified Bessel functions can be 
achieved with a very high accuracy [6-8], while the uncertainty of the 
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decrement and the frequency of oscillation as well as of the density of 
the liquid is less than a few parts in a thousand. Thus the uncertainty of 
the viscosity value is related to the uncertainty of the density of the wire 
Ps and its radius R. It has not, however, yet been possible to measure 
accurately the density of the wire sample, while its radius was found to be 
50.05__+0.03#m. The combined uncertainty in these two quantities 
produces an uncertainty in the absolute value of the viscosity of about 
___ 1%. To reduce this uncertainty of the viscosity further we have adopted 
the following procedure. 

We have assumed that the wire diameter was exactly 100.1 pm and the 
density of the wire equal to that given by Barrett [9]  for pure tungsten. We 
have subsequently performed a set of viscosity measurements for toluene at 
atmospheric pressure as a function of temperature. The sample of toluene 
used was supplied by Aldrich and has a purity of 99.9 % (HPLC). We have 
consequently altered slightly the value of the wire density ( < 1%), so that 
these measurements coincide exactly with the measurements of Goncalves 
et al. [10], performed in an Ubbelohde capillary viscometer with an 
uncertainty of +0.3 %. In Table I, our values for the viscosity of toluene 
and the values obtained by Gon9alves et al. [10] are shown. The value of 
the density of the wire obtained in this way was 19090kg-m -3 at 
273.15 K. It is thus estimated that the uncertainty of the present 
measurements is _+ 0.5 %, while the precision and reproducibility are better 
than + 0.1%. 

5. RESULTS 

In Table II the present measurements of n-hexane at 298.15 K and 
pressures up to 80 MPa are shown. The density of n-hexane used in these 
measurements was obtained from those represented by Li [11] and 

Table 1. The Viscosity of Toluene as a Function of Temperature at 
Atmospheric Pressure 

Viscosity (/zPa. s) 
Temperature Deviation 

(K) Present work Ref. 10 (%) 

304.72 513.8 513.7 +0.02 
312.52 470.6 471.2 --0.12 
322.24 426.0 425.6 + 0.09 
334.69 376.9 376.7 + 0.05 
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Table II. The Viscosity of n-Hexane at 298.15 K 
as a Function of Pressure 

Pressure Density Viscosity 
(MPa) (kg.m 3) (#Pa .s )  

0.1 655.2 298.0 
5.4 660.3 314.5 

10.5 665.1 331.4 
15.5 669.5 347.8 
20.6 673.8 364.1 
25.4 677.7 379.1 
30.7 681.8 396.5 
35.8 685.6 412.4 
41.3 689.5 430.9 
45.9 692.6 446.5 
50.9 695.9 462.9 
55.9 699.2 479.7 
60.9 702.2 496.6 
66.0 705.2 513.5 
70.6 707.9 529.6 

Dymond et al. [12], with an uncertainty better than _+0.1%. The value of 
the viscosity of n-hexane obtained at atmospheric pressure (280.0/~Pa .s) 
agrees with that obtained by Knapstad et al. [13] (294.9 #Pa-s),  in an 
absolute oscillating-cup viscometer with a quoted uncertainty of _+0.5%, 
within the uncertainty of the two instruments. As this instrument is the 
only other absolute viscometer, this comparison confirms the uncertainty 
quoted for our instrument. 
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Fig. 5. Deviations of experimental values of the viscosity of n-hexane at 
298.15 K and up to 80 MPa, from Eq. (25). (O)  Present work; (D)  Ref. 12; 
(A)  Ref. 13; (O)  Ref. 14. 
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For comparison purposes, we have used a Tait equation-based 
relation [14] to correlate the present measurements as 

["] F D+P ] in ~ = E l n  LD----~-~.lj (25) 

where #o represents the experimental viscosity at atmospheric pressure 
(298.04/~Pa. s). The values of E and D, obtained by a nonliniear least- 
squares procedure, were found to be E =  1.142 and D -- 108 MPa. In Fig. 5 
the deviations of the present experimental measurements from the above 
equation are shown. It can be seen that the maximum deviation is less than 
0.20 %, while the standard deviation of the fit is _+0.08 %. In the same 
figure the deviations of the measurements of two other investigators are 
also shown. The measurements of Kashiwagi and Makita [14] were 
performed in a torsionally vibrating crystal instrument on a relative basis 
and with a quoted uncertainty of + 2%. This set of measurements agrees 
with the present values within -+0.3%, which is well within the mutual 
uncertainty of the two instruments. The second set of measurements is that 
of Dymond et al. [12] performed in a self-centering falling-body 
viscometer on a relative basis with a quoted uncertainty of _+2%. The 
maximum deviation of these measurements from the above equation is 
_+1.7%, which again is well within the mutual uncertainty of the two 
instruments. 

6. CONCLUSION 

A new vibrating-wire viscometer for viscosity measurements in liquids 
at high pressures has been developed. The results presented in the paper 
show that the instrument operates in accordance with the theoretical 
description of it. Measurements of the viscosity of n-hexane are presented 
at 298.15 K and up to 80 MPa pressure, with an estimated absolute uncer- 
tainty of _+0.5%, an estimate confirmed by the comparison of laterature 
values of inferior accuracy. 
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